Maximal complements in finite groups
نویسنده
چکیده
Let G be a finite group with a non-abelian minimal normal subgroup N which is a direct product of the simple group X. The maximal subgroups of G which complement N and their conjugacy classes are parametrised in terms of certain homomorphisms taking values in AutX and satisfying particular conditions.
منابع مشابه
Computing maximal subgroups of finite groups
We describe a practical algorithm for computing representatives of the conjugacy classes of maximal subgroups in a finite group, together with details of its implementation for permutation groups in the MAGMA system. We also describe methods for computing complements of normal subgroups and minimal supplements of normal soluble subgroups of finite groups.
متن کاملMaximal subsets of pairwise non-commuting elements of some finite p-groups
Let G be a group. A subset X of G is a set of pairwise noncommuting elements if xy ̸= yx for any two distinct elements x and y in X. If |X| ≥ |Y | for any other set of pairwise non-commuting elements Y in G, then X is said to be a maximal subset of pairwise non-commuting elements. In this paper we determine the cardinality of a maximal subset of pairwise non-commuting elements in any non-abelian...
متن کاملGroups in which every subgroup has finite index in its Frattini closure
In 1970, Menegazzo [Gruppi nei quali ogni sottogruppo e intersezione di sottogruppi massimali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 48 (1970), 559--562.] gave a complete description of the structure of soluble $IM$-groups, i.e., groups in which every subgroup can be obtained as intersection of maximal subgroups. A group $G$ is said to have the $FM$...
متن کاملCritical maximal subgroups and conjugacy of supplements in finite soluble groups
Let G be a finite group with an abelian normal subgroup N . When does N have a unique conjugacy class of complements in G? We consider this question with a focus on subgroups and properties of maximal subgroups. As corollaries we obtain Theorems 1.6 and 1.7 which are closely related to a result by Parker and Rowley on supplements of a nilpotent normal subgroup (Theorem 1 of [3]). Furthermore, w...
متن کاملPairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کامل